

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 Copyright 2019, UT-Battelle, LLC

All rights reserved

datawork: a workflow tool that tries not to get in your way

OPEN SOURCE LICENSE (Permissive)

Subject to the conditions of this License, UT-Battelle, LLC (the “Licensor”) hereby grants, free of charge, to any person (the “Licensee”) obtaining a copy of this software and associated documentation files (the “Software”), a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Software.

	Redistributions of Software must retain the above open source license grant, copyright and license notices, this list of conditions, and the disclaimer listed below. Changes or modifications to, or derivative works of the Software must be noted with comments and the contributor and organization’s name.

	Neither the names of Licensor, the Department of Energy, or their employees may be used to endorse or promote products derived from this Software without their specific prior written permission.

	If the Software is protected by a proprietary trademark owned by Licensor or the Department of Energy, then derivative works of the Software may not be distributed using the trademark without the prior written approval of the trademark owner.

DISCLAIMER

UT-BATTELLE, LLC AND THE GOVERNMENT MAKE NO REPRESENTATIONS AND DISCLAIM ALL WARRANTIES, BOTH EXPRESSED AND IMPLIED. THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY PATENT, COPYRIGHT, TRADEMARK, OR OTHER PROPRIETARY RIGHTS, OR THAT THE SOFTWARE WILL ACCOMPLISH THE INTENDED RESULTS OR THAT THE SOFTWARE OR ITS USE WILL NOT RESULT IN INJURY OR DAMAGE. THE USER ASSUMES RESPONSIBILITY FOR ALL LIABILITIES, PENALTIES, FINES, CLAIMS, CAUSES OF ACTION, AND COSTS AND EXPENSES, CAUSED BY, RESULTING FROM OR ARISING OUT OF, IN WHOLE OR IN PART THE USE, STORAGE OR DISPOSAL OF THE SOFTWARE.

 [image: _images/pipeline.svg]pipeline status [https://code.ornl.gov/4jh/datawork/pipelines]
[image: _images/coverage.svg]coverage report [https://code.ornl.gov/4jh/datawork/commits/master]

datawork: a workflow tool that tries not to get in your way

This library intends to implement a comfortable workflow tool that:

	speeds up experimentation through caching of compute products

	enhances reproducibility in the form of automatic documentation

	enables quick refactoring of data-flow pipelines by simple abstraction of Tools and Data

	doesn’t require adoption of an overbearing framework

History

This project was initiated in support of a project in which a complex data
preprocessing workflow needed to be tweaked simultaneously with model
development, and all these steps needed to be deployed to an external
collaborator (via docker) in a fast prediction pipeline. Needless to say
managing this manually was challenging.

In order to attack that project, I employed some ideas I had picked up from
using NixOS for a few years: namely that content-based addressing is a powerful
tool for caching, and that flexible nested configurations are required for
large projects. The approach I used, however, used git submodules to form a
rigid hierarchy of python modules. The system worked, but was inflexible, so a
pain point emerged whenever we wanted to refactor the workflow at a high level;
for example, if we wanted to use only the training data for one step instead of
training+validation, it would require changes to some brittle pieces deep in
the code.

I became aware of a number of workflow solutions that are employed in other
areas: namely in cloud computing and bioinformatics. These include tools based
on CWL and WDL, which are nice for describing command line tools (more on that
later).

The datawork approach

Like in Toil, in datawork we use Python to orchestrate our workflow. This means
that data does not need to be serialized and written to disk in order to invoke
multiple tools, and by default this is only done for caching of intermediate
results. A CommandLineTool class is provided which lets users easily add
command line tools, and CWL/WDL importers are also planned, but it is not our
main focus.

When using datawork, users should focus on implementing tools by subclassing
the Tool class, setting class variables INPUTS, OPTIONS and OUTPUTS,
and providing an implementation of the run() method. run() is a static method
that takes as arguments a Config object and Data objects corresponding to
the INPUTS followed by the OUTPUTS. For example:

class Lp_2d(Tool):
 INPUTS = [('X', FloatData, 'First input'),
 ('Y', FloatData, 'Second input')]
 OPTIONS= [FloatOption('p', default=1.0, help='Power to raise each input to before summing')]
 OUTPUTS = [('sum', FloatData, 'Sum of first and second inputs')]
 @staticmethod
 def run(config, X, Y):
 return pow(pow(X, config.p) + pow(Y, config.p), 1./config.p)

lp2 = Lp_2d() # instantiate the class to create a "configurable" object

create some data to play with (these could instead be outputs of other Tools)
x = FloatData.constant(1.1)
y = FloatData.constant(0.5)

User invokes the Lp_2d object as if it were a function, passing Data objects
s = lp2(x,y)

x, y, and s can now be used with other tool instances to form complex pipelines

Unified command line interface

In the above example, a pipeline is built but it’s not actually executed until
we need the value of s.data. However, the unevaluated s object is still quite
powerful, as it holds its full provenance and configuration information. This
enables us to build a unified configuration and command line interface. The
following snippet:

command_line(s)

will create an argparse command line that looks like the following:

$ python pathreports.py --help
usage: pathreports.py [-h] [--visualize VISUALIZE] [--dryrun]

This is an automatically generated command line interface.

optional arguments:
 -h, --help show this help message and exit
 --visualize VISUALIZE
 Visualize computation graph and exit (provide a
 filename for PNG output).
 --dryrun Only display computation steps instead of actually
 computing anything

My plan is to add more functionality

Composed Tools and pipelines

Passing None to a tool represents
a “hole”, or partial application of that Tool. The result is similar to a
lambda function, and in datawork this is just another Data that handles like a Tool that takes
the missing inputs to the original tool.

These types allow us to orchestrate large pipelines using a pretty intuitive
syntax based on simple function invocation in Python (see examples/pathreports.py [https://code.ornl.gov/4jh/datawork/blob/master/examples/pathreports.py] for
a non-trivial example).

Computational configurations and compute resources

Since any Tool knows how to serialize its inputs and outputs, as well as its
configuration, it contains enough information to specify a compute job on a
separate resource. Indeed this is the main mode of operation in Toil, Cromwell,
and friends. However, in datawork, it is optional. I’m still thinking about
what the interface should look like, but I imagine taking a (possibly composed)
Tool and passing it to the constructor of a Job method, which amounts to a
“hint” for the execution phase that that entire subpipeline can appropriately
be computed as a separate job on a compute cluster. The configuration file
that’s generated would then properly mark sections belonging to Jobs, which
would enable different numbers of nodes to be used, etc.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

